Numerical Smoothness and Error Analysis on Weno for the Nonlinear Conservation Laws

نویسنده

  • TONG SUN
چکیده

In this study we give an a posteriori error analysis on the WENO schemes for the nonlinear scalar conservation laws. This analysis is based on the new concept of numerical smoothness, with some new error analysis mechanisms developed for the finite difference and finite volume discretizations. The local error estimate is of optimal order in space and time. The global error estimate grows linearly in time, because of the direct application of the L1contraction between entropy solutions in the error propagation analysis. As a beginning, we only deal with smooth solutions in this paper. Within the same error propagation framework, when we deal with piecewise smooth solutions later, we only need to work on estimating the local error where smoothness is lost. The smoothness indicators not only serve the purpose of local error estimation, but also serve as a monitor on both the possible numerical instability and the expected solution shapening.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive WENO methods based on radial basis functions reconstruction

We explore the use of radial basis functions (RBF) in the weighted essentially non-oscillatory (WENO) reconstruction process used to solve hyperbolic conservation laws, resulting in a numerical method of arbitrarily high order to solve problems with discontinuous solutions. Thanks to the mesh-less property of the RBFs, the method is suitable for non uniform grids and mesh adaptation. We focus o...

متن کامل

Adaptive WENO Methods Based on Radial Basis Function Reconstruction

We explore the use of radial basis functions (RBF) in the weighted essentially non-oscillatory (WENO) reconstruction process used to solve hyperbolic conservation laws, resulting in a numerical method of arbitrarily high order to solve problems with discontinuous solutions. Thanks to the mesh-less property of the RBFs, the method is suitable for non-uniform grids and mesh adaptation. We focus o...

متن کامل

High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws

In ([10], JCP 227 No. 6, 2008, pp. 3101–3211), the authors have designed a new fifth order WENO finite-difference scheme by adding a higher order smoothness indicator which is obtained as a simple and inexpensive linear combination of the already existing low order smoothness indicators. Moreover, this new scheme, dubbed as WENO-Z, has a CPU cost which is equivalent to the one of the classical ...

متن کامل

An implicit WENO scheme for steady-state computation of scalar hyperbolic equations

Weighted essentially non-oscillatory (WENO) schemes have proved useful in a variety of physical applications. They capture sharp gradients without smearing, and feature high order of accuracy along with nonlinear stability. The high order of accuracy, robustness, and smooth numerical uxes of the WENO schemes make them ideal for use with Jacobian based iterative solvers, to directly simulate the...

متن کامل

A semi-Lagrangian finite difference WENO scheme for scalar nonlinear conservation laws

For a nonlinear scalar conservation law in one-space dimension, we develop a locally conservative semi-Lagrangian finite difference scheme based on weighted essentially non-oscillatory reconstructions (SL-WENO). This scheme has the advantages of both WENO and semi-Lagrangian schemes. It is a locally mass conservative finite difference scheme, it is formally high-order accurate in space, it has ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011